
December 17, 2020

Analysis of the Butterfly Key Mechanism
from IEEE P1609.2.1/D11

1 Introduction
We start with a brief overview of the Butterfly Key Mechanism protocol from IEEE P1609.2.1/D11. There
are three types of parties involved: the end entity (EE), the cocoon key expander (CKE), and the butterfly
key expander (BKE). An EE generates caterpillar secret keys for signing and encryption, along with the
corresponding caterpillar public keys (for signing and encryption resp.). It also generates the secret key for
the key expansion function. The public keys and the expansion function secret key are sent to the CKE via
a secure channel. The CKE uses the expansion function and the expansion key to expand the caterpillar
public keys into a set of cocoon public keys (for signing and encryption). These public keys are permuted
and sent to the BKE. The BKE generates random offsets, which it uses to expand cocoon public signing
keys into butterfly public signing keys. These butterfly signing keys are then certified by the BKE. The
BKE also encrypts the offsets under the cocoon public encryption keys. The ciphertexts and certificates
are returned to the CKE. The CKE forwards them to the EE who requested the keys and certificates. The
EE computes the cocoon secret and public keys using the expansion function, decrypts the ciphertexts to
obtain the offsets and computes the butterfly secret and public signing keys, and checks the certificates. The
signing butterfly keys are for the ECDSA signature scheme used by EEs. The AES block cipher is used in
the expansion function. The encryption keys are for the ECIES encryption scheme (used by the BKE to
encrypt the offsets).

The analysis revealed that in the very strong threat model a slight tweak of the construction enables
provable security for the security goals of end entities’ (EEs’) key secrecy and unforgeability of their signa-
tures. For the goal of EEs’ anonymity (privacy), the security provably holds if either cocoon key expander
(CKE) or butterfly key expander (BKE) is honest (not corrupted), and if there is single BKE for each CKE.
The analysis presented below details the modified protocol construction, provides proofs, and also analyzes
the protocol under other, weaker threat models.

Abbreviations. Here we explain the abbreviations used throughout the report.

BKE Butterfly key expander
CKE Cocoon key expander
CDH Computational Diffie-Hellman
DHIES Encryption Scheme ECIES is based on
ECDSA Signature scheme used in the protocol
ECIES Encryption Scheme used in the protocol
EE End entity
IND-CPA Indistinguishability under chosen-plaintext attack
IND-CPA-RKA Indistinguishability under chosen-plaintext and related-key attack
IND-CPA-wRKA Indistinguishability under chosen-plaintext and weak related-key attack
ODH Oracle Diffie-Hellman
PRF Pseudorandom function
RKA Related-key attack
RO Random Oracle
SHA Hash function used in the protocol
UF-CMA Unforgeability under chosen-message attack
UF-RKA Unforgeability under related-key attack
UF-wRKA Unforgeability under weak related-key attack
ODH Oracle Diffie-Hellman

1

2 Security Results

2.1 Scope and Assumptions
According to my conversations with Virendra Kumar, in my analysis I only studied the cryptographic
core of the Butterfly Key Mechanism from Section 9 of the updated draft P1609.2.1/D11. In particular, I
only focused on explicit certificates and the original mode with encryption and signature. I also made the
following assumptions. The communication between EEs and CKE is private and authenticated, and the
communication between CKE and BKE is authenticated. CKE verifies the EEs’ enrollment certificates so
that the attackers cannot impersonate EEs. The caterpillar keys of EEs are always honestly generated and
thus have the right distribution and are independent from each other. Each EE is communicating with single
CKE, and each CKE may talk to several BKEs.

2.2 Report Outline and Results Summary
The security results for the modified protocol depend on the threat model. Below we (I use terms “I” and
“we” interchangeably in the report) treat different threat models separately. In Section 2.3 we consider
the case when only one or two EEs are honest but the rest of the parties, including the BKE and CKE
are corrupted. In this case, anonymity cannot hold, but unforgeability and key secrecy hold: Theorem 2.2
states the adversarial capabilities and goals, and under which computational assumptions security holds.
Most of the assumptions are standard and widely used in proofs of cryptographic schemes, but one is not.
In Section 2.4 we treat the case when the EEs and BKE are honest, but the rest are corrupted. In this
case, unforgeability and key secrecy hold under the same computational assumptions as in the previous case.
Anonymity holds assuming there is the only single BKE for honest EEs, or when there are several BKEs, but
each BKE gets permuted requests containing equal portions of each EE’s requests. There are only standard
computational assumptions needed for this result. Theorems 2.4, 2.5 state the result in detail. In Section
2.5 the only honest parties are the EEs and and the CKE. Security results are as in the previous case. In
Section 2.6 the attacker can corrupt BKE and CKE but it is passive (honest-but-curious). Anonymity cannot
hold in this case, but unforgeability and key secrecy hold under the same assumptions as in the previous
sections. Finally in Section 2.7 we assume that all parties are honest and the attacker can only observe the
unencrypted communication. In this case, all security properties hold under the standard computational
assumptions.

We now describe the analysis in detail.

2.3 Honest EEs
We start with the strongest security model, where one or two EEs, who talk to the same CKE, are honest,
but every other party (including the CKE) are corrupted by an attacker. This is a very strong threat model,
which may or may not be realistic in practice, but it is good to realize its impact on security.

In this case the attacker will know everything the CKE and BKEs know jointly, including the EEs’
caterpillar, cocoon and butterfly public keys, the expansion functions and the private offsets BKEs choose,
and also the BKEs’ private certificate keys. We assume the attacker is active in that it can deviate from the
protocol.

EE Anonymity (Privacy). Not surprisingly, the attacker can later link public keys and certificates to
EEs (whether they belong to the same EE or not, and moreover, whose public key is whose). This is because
the attacker will know the butterfly public keys of EE and the certificates, and to which EE the certificates
are returned. Hence no EE anonymity can be achieved. And of course, the certificates cannot be trusted as
they may have been produced by the attacker.

EE Key Secrecy and Signature Unforgeability. In practice one, of course, should be concerned about
key secrecy. Another concern is unforgeability of signatures. These security goals are related. The private
key recovery attack, if successful, would also imply a successful signature forgery attack, as signatures can

2

easily be forged using the recovered private key of the EE. However, the signature forgery attack, if successful,
doesn’t necessarily imply a successful private key recovery attack. So, protecting against signature forgery
attacks is a strictly stronger security goal, as that would mean that the scheme is also protected against
private key recovery attacks. Hence, we only explicitly focus on the goal of signature unforgeability, and not
key secrecy.

It may seem that since the attacker does not know the private caterpillar keys of the honest EEs, the
unforgeability holds. More precisely, one could expect that the signatures created by honest EEs are secure
(unforgeable) given that a secure signature scheme is used. However, there is an issue here. Usually, a proof
by reduction is used to prove statements like this. I.e., one proves that if an attacker can forge signatures
on behalf of an honest EE in the big protocol, then there exists an attacker breaking security of the base
signature scheme.

But such a proof by reduction will not immediately work here. This is because the standard (unforgeabil-
ity under chosen-message attack or UF-CMA [5]) security of the base signature is not enough for the proof
to go through. This is because the attacker against the protocol sees the caterpillar public key, computes
the cocoon key, and can adversarially choose the butterfly offset that will influence the butterfly keys. Then,
in order to win the attacker has to forge a signature under the resulting butterfly public key. And it does
not seem to be possible to use this attacker attacking the protocol to create an attacker breaking the base
signature scheme as the latter is dealing only with the single fixed key. What one would need is stronger
security for the base signature scheme such as unforgeability under related-key attack (UF-RKA [3]). Such
a notion requires unforgeability to hold even if the attacker can observe signatures under related keys.

Note that the above issue does not imply there is an attack on the protocol. It just shows that we do
not have provable security guarantees given the known state-of-the-art.

Turns out, a weaker version of the unforgeability under related-key attack for the base signature scheme
may work for us. But unfortunately, ECDSA signature scheme used in the protocol is not known to be
provably secure in this sense, even though it is more likely to satisfy this weaker notion than resisting the
general RKA attacks.

In order to obtain provable security under the weak RKA attacks (that we can cautiously conjecture) we
need a very simple modification to the protocol. The change is as follows. In the current design the BKE
picks the offset r, and sends it (encrypted) to EE via CKE, as before. But now H(r||Bi) is used instead of
r in butterfly key generation, where || denotes concatenation and Bi is the cocoon public key of EE. Note
that EE and BKE know Bi since CKE sends it to BKE. Here H is a cryptographic hash function with the
range {0, 1}`, where ` is the bitlength of the private keys. In the protocol ` is 256, so either SHA-256 or
SHA-3 with the output length of 256 bits would work. If ` is greater than the range of the hash, then H can
be constructed from the hash by applying it to the same input with fixed and distinct prefixes.

The intuition for this modification is to prevent a corrupted BKE to choose r maliciously. Applying
the hash makes the result look random despite the choice of r, as long as hash inputs do not repeat. The
use of the cocoon public key is to prevent repeated inputs. Even if the malicious BKE chooses the same r,
the cocoon keys will be distinct as the outputs of expansion functions will be distinct (with overwhelming
probability).

We now provide a formal analysis.
First, we define the weaker notion of RKA security for discrete-log based signature schemes. We call it

UF-wRKA.

Definition 2.1. [UF-wRKA] Fix a discrete-log based signature scheme. The experiment picks a random
exponent x, which is the secret key and also picks random exponent offsets a1, ..., ak. The attacker is given
the public key x ∗ g, as well as the group description and the generator g, but it does not know x. In
addition, the attacker is given all offsets a1, ..., ak, and also signing oracles Sx+a1

(·), . . . , Sx+ak
(·), which

return signatures on messages of the attacker’s choice computed under the corresponding secret keys (stated
in the subscripts). Note that the attacker knows (can compute) the corresponding public keys too. The
attacker wins if it can compute a signature on any message that is valid wrt any of the public keys gx+ak ,
given that it did not query the corresponding signing oracle on this message. The UF-wRKA advantage
of the attacker is the probability of its winning. A signature scheme is called UF-wRKA secure if for any
efficient (poly-time) attacker its UF-wRKA advantage is negligible.

3

Theorem 2.2. [Unforgeability] If at least one EE is honest, then no efficient attacker who can corrupt
all other parties, including the CKE and BKE communicating with the EE (via CKE), learns the CKE’s
expansions for the EE y1, . . . , yk and can pick the BKE’s offsets r1, . . . , rk, and who observes the signatures
created by the EE with its k resulting butterfly private keys, can forge a signature on behalf of the EE wrt to
any of its butterfly keys. This assumes UF-wRKA security of the base discrete-log-based signature scheme,
the block cipher used in the expansion functions being an ideal cipher, and that the hash function is modeled
as a random oracle [4, 5].

It is extremely common to model hash functions as random oracles in the proofs. The AES is believed
to be a PRF and also often assumed to be an ideal cipher, e.g., [6,7,9]. The ECDSA signature scheme used
by the protocol uses discrete-log-type keys and is known to be UF-CMA assuming the hardness of discrete
logarithm problem and that the underlying hash is a random oracle [8]. However, as we mentioned, the
scheme is not known to be UF-CMA-wRKA, even though this seems plausible.

Proof. First we observe that even from the point of view of the malicious CKE, each EE’s cocoon private
key has the distribution of a sum of a randomly picked key a (unknown to the attacker) and a randomly
picked CKE expansion y (known to the attacker). This is because the caterpillar private key a is honestly
generated by the EE, and the expansion values y’s, though known to the attacker, are unpredictable to it,
as they are produced by honest EE. It is important here that each y is computed via a sequence of block
ciphers computed under an honestly generated key on non-repeated inputs. This is a known construction of a
pseudorandom generator, that is secure assuming the underlying block cipher is a pseudorandom function [5]1.
Note that XORing operations are not needed here, in that we would get the same security property if no
XOR operations were used in addition to block cipher computations. Also note that even though security
of the aforementioned block-cipher-based PRF relies on the secrecy of the private key, and in our case the
attacker knows the key, the statement about the cocoon key distribution still holds since the attacker cannot
select the inputs based on the key. But for this reason we will need to rely on a stronger, but still widely-used
assumption of the block cihper being an ideal cipher, i.e., being a random permutation for every key.

Now we show that if there exists an efficient attacker AdvA who can create a forgery on behalf of the
honest EE, then we can construct an efficient UF-wRKA attacker AdvB against the base signature scheme.

We construct AdvB, who uses AdvA as a subroutine as follows.
AdvB is given X = x ∗ g, the group description, the generator g, random a1, ..., ak and access to signing

oracles Sx+a1
(·), . . . , Sx+ak

(·). To produce a forgery it will use the attacker AdvA.
Attacker AdvA, which attacks unforgeability of the protocol, expects to see the caterpillar public key

A = a ∗ g and random (as justified above) expansion values y1, . . . , yk. The attacker AdvA makes random
oracle queries on BKE’s offsets r1, . . . , rk and expects to see the returned random values z1, . . . , zk. It also
expects access to the signing oracles Sa+y1+z1(·), . . . , Sa+yk+zk(·) that model signatures issued by the EE
using its butterfly keys.

First AdvB picks k random offsets y1, . . . yk, and gives AdvA the public key X and y1, . . . yk. Whenever
AdvA makes the random oracle query ri||Bi, AdvB replies with zi = ai − yi.

Whenever AdvA makes a signing query M to its ith signing oracle, AdvB sends M to its own ith signing
oracle and forwards the reply to AdvA. When AdvA outputs its forgery (a message and a signature), AdvB
outputs the same forgery.

We now claim that AdvB wins whenever AdvA wins. First, we observe that the simulation is perfect
for AdvA in that its view is like in the actual attack experiment. The EE’s key it is given has the right
distribution of a random key (because X given to AdvB has the same distribution). The values yi have
the right distribution as per our argument in the beginning of the proof. Under the random oracle model,
the BKE’s offsets z’s also have the right (uniform) distribution. It is important here that we assumed that
AdvA cannot make r||Bi query repeat, as Bi depends on yi. Now notice that the signatures for AdvA are
computed correctly by AdvB because AdvA expects signatures under keys a + yi + zi which is exactly the
private key underlying the corresponding AdvB’s signing oracle: x+ ai = x+ zi + yi = a+ yi + zi. Finally,
the forgery of AdvA is a valid forgery for AdvB. And clearly, if AdvA is efficient, then AdvB is efficient.

1The result is part of the proof of security of the stateful counter mode encryption scheme.

4

2.4 Honest EEs and BKE
Now we assume that one or two EEs are honest, as well as one of BKEs they are related to. Every other
party, including the CKE can be corrupted. The attacker will know the values we described in the Section 2.3
except for BKE’s offsets and private key that it uses to issue certificates.

Unforgeability. The main difference here is that the attacker does not know the BKE’s offsets. This is
less information than in the threat model above (when BKE is corrupted), so the same security claim about
unforgeability applies. And we still cannot prove security based on the standard notion of unforgeability for
the base signature scheme ECDSA, and need to rely on its UF-wRKA security.

Anonymity. EE’s anonymity depends on whether corrupted CKE deals with only one BKE or more.
If there are more than one BKE and EEs the CKE works with, then no anonymity holds as a malicious

CKE can do the following attack. Say, the corrupted CKE gets requests from EE1 and EE2, and each is
expanded into several cocoon keys using the expansion function. Then the CKE can send BKE1 all requests
from EE1 and BKE2 all requests from EE2. Later, the attacker will not be able to tell the EEs’ keys apart,
but it will be able to tell their certificates apart, as they will be signed by different BKEs.

If there is only one BKE for each EE and CKE, then anonymity holds, because the attacker does not
get any information about BKEs offsets due to encryption, and the offsets are random. Hence the resulting
butterfly public keys look random to the attacker regardless of whether they come from the same or different
EEs. To prove this we have to show that if the attacker can get any information about BKE’s offsets, then one
can break security of the base encryption or signature schemes. There is some complication with proving this
as the attacker knows the CKE’s expansion function key and hence the encryption key offset. However, as we
showed in the proof of Theorem 2.2, the attacker still cannot influence them, as the expansion function key is
chosen honestly by the EE, and the inputs are chosen independently from the CKE, and they don’t collide.
Hence, the output of the expansion function, which is the CKE’s offset has the right uniform distribution
assuming ideal-cipher security of the blockcipher used (XOR is not needed for this). Even though it’s known
to CKE, the proof still goes through.

To prove anonymity of the protocol we would like to use the fact that the underlying public-key encryption
scheme, ECIES is secure. But again, the standard security (indistinguishability under chosen-plaintext
attack or IND-CPA) is not immediately sufficient for us. Since the attacker breaking the protocol will see
ciphertexts created under different but related cocoon keys (they are related because they correspond to the
same caterpillar key and the attacker knows that key and the cocoon extensions), we need to rely on the
security of ECIES under a weak notion of related-key attack. Again, ECIES is not known to be secure in
this sense. The good news is that we can prove this (cf. Theorem 2.5).

Before we state our theorem, we define security of a symmetric encryption scheme against weak related-
key attacks.

Definition 2.3. [IND-CPA-wRKA] Fix a discrete-log public-key encryption scheme. The experiment
flips a random bit b, picks a random x, which is the secret key and also picks random offsets a1, ..., ak. The
attacker is given the public key x∗g, as well as the group description and the generator g, but it does not know
x. In addition, the attacker is given all offsets a1, ..., ak. The attacker outputs k pairs (m1

0,m
1
1), . . . , (m

k
0 ,m

k
1)

of messages of the same length, in the message space of the scheme. It gets back k challenge ciphertexts
E(x+a1)∗g(m

1
b), . . . , E(x+ak)∗g(m

k
b). The attacker has to output a bit and it wins if it is equal to b. The IND-

CPA-wRKA advantage of the attacker is defined as 2 times its probability of winning minus 1. A scheme
is called IND-CPA-wRKA secure if for any efficient (poly-time) attacker its IND-CPA-wRKA advantage is
negligible.

Theorem 2.4. [Anonymity] If at least two EEs talking to the same CKE are honest, as well as the only
single BKE they are related to, or when there are several BKEs, but each BKE gets permuted requests
containing equal portions of each EE’s requests, then no efficient attacker who can corrupt all other parties,
including the CKE, learns the CKE’s expansions y’s for each EE, and who observes the ciphertexts created
by the honest BKE, observes butterfly public keys of EEs and the BKE’s certificates on them, can link these
keys with the EEs. Linking here means telling if two keys belong to same EE or different EEs, and which

5

key belongs to which EE. This assumes the IND-CPA-wRKA security of the base encryption scheme, that
the encryption scheme is robust [1] and uses discrete-log-type keys, the standard (UF-CMA) security of the
signature scheme used by BKE, and the block cipher used in the expansion functions being an ideal cipher.

Theorem 2.5. [IND-CPA-wRKA Security of ECIES] The ECIES encryption scheme is IND-CPA-
wRKA secure under the strong Diffie-Hellman assumption in the random oracle model, and assuming its
base symmetric encryption and MAC are secure.

Note that ECIES is proven to be IND-CCA secure (a stronger notion than IND-CPA) under the same
assumptions in [2]. I did not check if the standard implementation of ECIES complies with the general
scheme (called DHIES) proven IND-CCA secure in [2]. In my analysis I will refer to DHIES.

Theorem 2.5 (proven later in this report) states IND-CPA-wRKA security of DHIES. Robustness men-
tioned in Theorem 2.4 means that it is hard to come up with a ciphertext that is valid under two different
keys. In the base ECIES encryption scheme, if the same randomness is used by the sender, but the public
encryption keys are different, then, assuming the underlying KDF function is a random oracle, the derived
symmetric key for the MAC will be random and the probability that the second ECIES ciphertext will be
valid is negligible, assuming that the MAC scheme underlying ECIES is UF-CMA. This is formally proven
for DHIES in [1]. The ECDSA signature scheme used by the protocol uses discrete-log-type keys and is
known to be UF-CMA assuming the hardness of discrete logarithm problem and that the underlying hash
is a random oracle [8]. It is common to assume AES as an ideal cipher. So the protocol’s anonymity is
guaranteed under the well-accepted computational assumptions.

Proof of Theorem 2.4. First, just like in the proof of Theorem 2.2, we observe that even from the point of
view of the malicious CKE, the EEs’ cocoon private keys have the distribution of a sum of a randomly
picked key (unknown to the attacker) plus a randomly picked key (known to the attacker). This is because a
caterpillar private key a is honestly generated by the each EE, and the expansion values ys, though known to
the attacker, are unpredictable to it, as it is produced by the honest EE. This is because each ys is computed
via a sequence of block ciphers computed under an honestly generated key on non-repeated inputs. This is a
known construction of a pseudorandom generator. Again, the XORing operations are not needed for security.
Also note that even though security of the aforementioned block-cipher-based PRF relies on the secrecy of
the private key, and in our case the attacker knows the key, the statement still holds since the attacker
cannot select the inputs based on the key. But we assume that the block cipher is a random permutation
for every key.

Now we note that if the attacker has no information about the BKE offsets, then all butterfly keys, of
one or more EEs, will have the uniform distribution and hence will be unlinkable.

To model the security against the protocol attacker getting some information about the BKE offsets, we
consider the following experiment associated with protocol attacker AdvA. The experiment flips a random bit
b. AdvA is given the EE’s caterpillar public key A = ga and random y1, . . . , yk to model the unpredictable
expansion values. (Just like in the proof of Theorem 2.2, AdvA has to be given the secret key for the
expansion function, but as we justified, it is equivalent to give AdvA a random y’s.) AdvA is also given
access to left-right encryption oracle that it can query on k message pairs (m1

0,m
1
1), . . . , (m

k
0 ,m

k
1). The oracle

returns encryptions of m1
b , . . . ,m

k
b . The adversary outputs its guess d and wins if d = b. The advantage of

the attacker is is defined as 2 times its probability of winning minus 1.
Now we show that if there exists an efficient attacker AdvA, then we can either construct an efficient

IND-CPA-wRKA attacker AdvB against the base public key encryption scheme or an efficient UF-CMA
attacker against the signature scheme.

Let us consider 3 possibilities: when the attacker sends to BKE properly computed (via expansion)
cocoon public keys of EEs and otherwise, follows the protocol, when at least on of the keys is not properly
computed, and when the attacker sends to EE a ciphertext different than the BKE created.

1. We consider the case when the attacker AdvA sends to BKE the properly computed (via expansion)
cocoon public keys of EEs. In this case we construct AdvB, who attacks the security of the base
public-key encryption scheme and uses AdvA as a subroutine as follows.
The IND-CPA-wRKA attacker AdvB we construct is given a public key X = gx for an unknown x, as
well as the group description and the generator g. In addition, the attacker is given all offsets a1, ..., ak.

6

AdvB has to output k pairs of messages and later guess whether it’s given encryptions of left or right
messages. It will use the attacker AdvA.

The protocol attacker AdvA expects the EE’s caterpillar public key A = a ∗G and random y1, . . . , yk.
To simulate these inputs, AdvB gives AdvA its own key X as AdvA and offsets a1, ..., ak as y1, . . . , yk.
When AdvA queries k pairs (m1

0,m
1
1), . . . , (m

k
0 ,m

k
1) of messages, AdvB outputs the same messages and

forwards the challenge ciphertexts to AdvA.

When AdvA outputs its guess (left or right), AdvB outputs the same guess.

We now claim that AdvB wins whenever AdvA wins. First, we observe that the simulation is perfect
for AdvA in that its view is like in the actual attack experiment. The EE’s key it is given has the
right distribution of a random key. The value y’s have the right distribution as per our argument in
the beginning of the proof. Now notice that the left-right encryption queries for AdvA are computed
correctly by AdvB because AdvA expects encryptions under key (a+ yi) ∗ g = (x+ ai) ∗ g, and this is
exactly what AdvB does. Finally, the correct guess of AdvA is a correct for AdvB, and the advantages
of the attackers are the same. And clearly, if AdvA is efficient, then AdvB is efficient.

2. Now we have to consider a possibility when a malicious CKE sends to BKE a maliciously created
cocoon public key. In this case we cannot expect that the attacker learns no information about the
offset BKE encrypts under such public key. But if the CKE forwards such a ciphertexts to the honest
EE, it will decrypt the ciphertext using the distinct honest cocoon decryption key. And we are assuming
the ciphertext will not be valid in this case, due to robustness.

3. Finally, if AdvA tries to send to EE a ciphertext different than the BKE created, then the EE will
detect this if the signature on the ciphertext will be invalid. If AdvAmanages to create a valid signature
on a new ciphertext, then we can create an UF-CMA attacker for the signature scheme.

Proof of Theorem 2.5. It was shown in [2] that DHIES is IND-CCA under the strong Diffie-Hellman assump-
tion in the RO model, and assuming the base symmetric encryption scheme and MAC are secure (Theorems 2
and 6 in the ePrint version of the paper https://cseweb.ucsd.edu/~mihir/papers/dhaes.pdf). Namely,
Theorem 2 there shows that DHIES is secure under the oracle Diffie-Hellman assumption (ODH), and The-
orem 6 shows that the ODH assumption is implied by the strong CDH assumption in the RO model. We
extend the proof of Theorem 2 from [2] to show that DHIES is also IND-CPA-wRKA secure under the ODH
assumption. We do not consider the chosen-ciphertext attacks and do not deal with the decryption oracles,
because CCA attacks do not seem to be a threat in our setting.

We only modify Case 1 that deals with the ODH assumption and the case when the outputs of the hash
function used in encryption do not look random. The other cases, that deal with security breaks for the
case when the hash function outputs and hence symmetric keys look random, work for us without changes.
In the proof for Case 1 one constructs the attacker AdvB breaking the ODH assumption using the attacker
breaking the standard IND-CCA security of DHIES. In our case, the IND-CPA-wRKA attacker will be used.
The reduction is constructed in Figure 6 there. The ODH attacker C is given values g, U = gu, V = gv,W ,
where g is a random generator, u, v are random exponents and W is either H(guv) or a hash of a random
group element2. The attacker has to figure out which case it is. In addition to other values, it is given
oracle Ov(·) which on any input group element X returns H(Xv). To compute the public key and the
challenge ciphertext for the encryption attacker, the ODH attacker C uses V as the public key, U as the
first “randomness” part of the DHIES ciphertext, and W to compute the keys for the symmetric encryption
and MAC schemes used to encrypt the message mb, where b is a random bit chosen by C and (m0,m1) are
given by the DHIES attacker. The idea when the “real” W was used then the simulation is perfect, and when
the “random” W is used, then random symmetric keys are used and security relies on underlying symmetric
encryption and MAC.

2We use the multiplicative notation here following [2] unlike the additive notation usually used for elliptic curve groups, but
this difference is not important for the security results.

7

https://cseweb.ucsd.edu/~mihir/papers/dhaes.pdf

The only difference is that in our case IND-CPA-wRKA attacker is given k random offsets, and instead
of making one left-right query, the attacker now makes k, and gets k challenge ciphertexts, under different
but related keys.

To make the reduction work for our case, we consider k + 1 “hybrid” experiments associated with the
protocol attacker AdvA. The experiments differ in how the k challenge ciphertexts are created. In experiment
Expi (0 ≤ i ≤ k), in the first i ciphertexts the attacker is given, a random value is used instead of the output of
the hash function. The rest of the ciphertexts are computed properly. So Case 1 described above considers the
probability of the attacker detecting that at least one of the hashes underlying the challenge ciphertexts does
not look random. In other words, the attacker can distinguish “real” ciphertexts from “random” ciphertexts,
or Exp0 from Expk. We claim that if the attacker can distinguish Exp0 from Expk, then it must be able to
distinguish Expi from Expi+1 for some 0 ≤ i ≤ k − 1. And then we can provide a reduction and construct
the ODH attacker.

We construct the ODH attacker AdvB as follows. Recall that the ODH attacker C is given values
g, U = gu, V = gv,W , where g is a random generator, u, v are random exponents and W is either H(guv)
or a hash of a random group element. It is also given Ov(·). The attacker has to figure out which case it is.

AdvB picks k random offsets y1, . . . , yk. It gives AdvA the EE’s caterpillar public key V · g−yi , and k
cocoon public keys V · gy1−yi , . . . , V, V · gyi+1−yi , . . . , V · gyk−yi . Now, to create challenge ciphertexts, AdvB
encrypts the first i−1 messages using randomly picked values in place of the hash, and the last k−i messages
properly according to the encryption algorithm using the corresponding keys. To encrypt ith message for
AdvA, AdvB uses its input U as the first part of the ciphertext, and then uses W in place of the underlying
hash value to compute the symmetric keys. These keys are used then as usual according to the encryption
algorithm.

Finally, AdvB outputs the same bit as AdvA does.
We claim that AdvB wins if AdvA wins. This is because the simulation of the two hybrid experiments is

perfect, in that the view of AdvA has the right distribution. The public keys AdvA is given are ga = gv−yi

and ga+y1 , . . . , ga+yk , and the ciphertexts are computed as they should in the experiments. This is clear for
all ciphertexts except perhaps for the ith ciphertext. For that, note that W is either H(guv) or a random
value. If the former, we get what’s needed for Expi, and if not, then we get what’s need for Expi+1. As
usual with the proof involving hybrid experiments, there is a security loss proportional to the number of the
hybrid experiments. Hence we get

AdvIND−CPA−wRKA
DHIES (AdvA) ≤ k · AdvODH(AdvB) .

Clearly, if AdvA is efficient, then AdvB is efficient.
The above implies that DHIES (and hence ECDIES) is IND-CPA-wRKA secure under the same assump-

tions as were used to prove the scheme IND-CCA secure, but security degrades linearly as k, the number of
related keys, grows.

2.5 Honest EEs and CKE
Now the attacker knows what is specified in Section 2.3 except for the expansion functions.

Unforgeability. Again, this is less information than in the threat model where only EE is honest (when
CKE is corrupted), so the same security claim about unforgeability (Theorem 2.2) applies.

Anonymity. EEs’ anonymity does hold assuming that honest CKE sends each BKE the permuted requests
containing equal portion of each EE’s cocoon keys or there is only one BKE for each EE, and since the cocoon
keys have the right (uniform) distribution. The attacker knows the offsets BKE chooses, and the butterfly
public keys, but it cannot connect them to EEs as it does not know the connection between cocoon public
keys and EEs.

8

2.6 CKE and BKE are Passive (Honest-but-Curious)
In this case, the attacker can corrupt BKE and CKE but follows the protocol. In this case the attacker
cannot create BKE’s offsets maliciously and cannot send invalid keys and ciphertexts. But the attacker can
still observe signatures created under related keys so we still need to rely on the UF-CMA-wRKA security of
the signature scheme for unforgeability. Anonymity cannot hold for the same reason as explained in Section
2.3 for the case of active attacker.

2.7 All Parties are Honest, the Attacker is an Outsider
In this case, the attacker can only observe the communication sent via non-private channels. Then, both the
EE anonymity/privacy and the signatures unforgeability hold based on the standard unforgeability property
of the base signature scheme. Anonymity holds unconditionally given the assumption that the communication
channel between EEs and CKE is private and all the attacker sees is the ciphertexts and certificates that do
not contain links to EEs.

References
[1] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. In Daniele Micciancio, editor,

Theory of Cryptography, pages 480–497, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[2] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The Oracle Diffie-Hellman assumptions and an
analysis of DHIES. In David Naccache, editor, Topics in Cryptology - CT-RSA 2001, The Cryptographer’s
Track at RSA Conference 2001, San Francisco, CA, USA, April 8-12, 2001, Proceedings, volume 2020
of Lecture Notes in Computer Science, pages 143–158. Springer, 2001.

[3] Mihir Bellare, David Cash, and Rachel Miller. Cryptography secure against related-key attacks and
tampering. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology – ASIACRYPT
2011, pages 486–503, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[4] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In ACM Conference on Computer and Communications Security, pages 62–73, 1993.

[5] Mihir Bellare and Phillip Rogaway. Introduction to Modern Cryptography. 2005. https://www.cs.
ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf.

[6] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of the block-cipher-based
hash-function constructions from pgv. In Moti Yung, editor, Advances in Cryptology — CRYPTO 2002,
pages 320–335, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[7] Anand Desai. The security of all-or-nothing encryption: Protecting against exhaustive key search. In
Mihir Bellare, editor, Advances in Cryptology — CRYPTO 2000, pages 359–375, Berlin, Heidelberg,
2000. Springer Berlin Heidelberg.

[8] Manuel Fersch, Eike Kiltz, and Bertram Poettering. On the provable security of (EC)DSA signatures.
In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, pages 1651–1662. ACM, 2016.

[9] Éliane Jaulmes, Antoine Joux, and Frédéric Valette. On the security of randomized cbc-mac beyond the
birthday paradox limit a new construction. In Joan Daemen and Vincent Rijmen, editors, Fast Software
Encryption, pages 237–251, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

9

https://www.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://www.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf

	Introduction
	Security Results
	Scope and Assumptions
	Report Outline and Results Summary
	Honest EEs
	Honest EEs and BKE
	Honest EEs and CKE
	CKE and BKE are Passive (Honest-but-Curious)
	All Parties are Honest, the Attacker is an Outsider

