ANOPEN, TRAHPARAEIT, WOULSTIYYDRNVENAPPROAGH TOAVSAEEY

 Jack Weast Sr. Principal Engineer, Intel VP, Automated Vehicle Standards, Mobileye

HUUANDRIIVNG TODAY

The balance between safety \& efficiency

HOWWOULDYOU DEFNE "DRIVINGSAFELY" FORANAV?

A statistical argument

Self-driving cars should be statistically better than a human driver

MIIESDRIVEN

The more miles I drive without a crash, the safer I am

Miles driven here

HOWWOULDYOUD DEFNIE "DRIVINESAREEY" FORANAV?

A catch-all

Avoid collisions at all costs

THE AVMUST AVOID COLLISIONS ATALL COSTS

So what do we do?

What do humans do?

EXPLIDIT TRAFFICRULES

Establish priority of road agent interests to avoid collisions

- Come to complete stop at red lights
- Don't cross a double-yellow line
- Obey posted speed limits
- Yield to other road users when posted
Set limits on vehicle operation

INPLIATRULESOFTHEROAD

A general set of principles applied by the driver

- Keep a safe distance from the car in front of you
- Drive cautiously under limited visibility
- Don't drive slow in the fast lane
- Don't cutoff other drivers
rexible, culturall derendent

IMPLIRIT RULESOF THEROAD

Essential for Navigating Complex Scenarios

RESPOINSBIBLITYSENSTITVESAEETY

An open, transparent, technology neutral safety model for autonomous driving

RULESOFRSS

Rules to verify AV safety \& performance
1 Do not hit someone from behind
2. Do not cut-in recklessly

3 Right-of-Way is given, not taken
4 Be careful in areas with limited visibility
5 If you can avoid a crash without causing another, you must

RESPONSBILLTYSENSITIVE SAEEYYRSSS

FORMALIZ
Human notions of
safe driving

EXECUTE

The Appropriate Response

Keep a safe distance longitudinally
\& laterally

Safe distance compromised in both directions

Brake to restore safe longitudinal distance

- A formal version of the 3-second-rule from Driver's Ed

WHAT WAKESASAFESTATE?

First and foremost, keep a safe distance from others

WHATDEEERYNIESSAEEDISTANEE?

If thelksildeteranstanseferdtttanorakes, how inarstidspadacloolloacihtgoparaiddtitting it?

WHATDEEERYNIESSAEEDITANVE?

$$
\boldsymbol{d}_{\min }=\left[v_{r} \rho+\frac{1}{2} \alpha_{\max } \rho^{2}+\frac{\left(v_{r}+\rho \alpha_{\max }\right)^{2}}{2 \boldsymbol{\beta}_{\min }}-\frac{v_{f}^{2}}{2 \boldsymbol{\beta}_{\max }}\right]_{+}
$$

DEFNIESAFELATERAL DISTANEE

More complicated than longitudinal We rarely stay perfectly centered in our lane

DEFINESAFELATERAL DISTANEE

$$
d_{\min }=\mu+\left[\left(\frac{v_{1}+v_{1, \rho}}{2}\right) \rho+\frac{v_{1, \rho}^{2}}{2 \beta_{1, \text { lat }, \min }}-\left(\left(\frac{v_{2}+v_{2, \rho}}{2}\right) \rho+\frac{v_{2, \rho}^{2}}{2 \beta_{2, \text { lat }, \min }}\right)\right]
$$

We also have a "lane within the lane" ($\boldsymbol{\mu})$
The max movement allowed within the lane without compromising safety

From our safe distance formula, we can infer a tipping point between safety \& danger

PROOF PART2:DANEERTMRESHOLD

THE DANEERTHRESHOLD

The moment just before we reach an unsafe distance longitudinally and laterally

PROOFPRRT3:PROPPRRREPPOMSE

Once we cross the Danger Threshold, we must take action to restore safe distance, otherwise we remain exposed to a potentially unãvoidable crash

PROPER RESPONSE-LONGITUDINAL DANGER

Though the silver car initiated the dangerous situation, the blue car still ought to brake to return to a safe distance

PROPER RESPONSELATEEAL

In a dangerous lateral situation, both vehicles may need to react to avoid a crash

Does it work?

What's the catch?

$$
\boldsymbol{d}_{\min }=\left[v_{r} \rho+\frac{1}{2} \alpha_{\max } \rho^{2}+\frac{\left(v_{r}+\rho \alpha_{\max }\right)^{2}}{2 \boldsymbol{\beta}_{\min }}-\frac{v_{f}^{2}}{2 \boldsymbol{\beta}_{\max }}\right]_{+}
$$

WHATISB $\mathrm{myR}^{\text {? }}$

Values for braking, acceleration, reaction time are not static, but dynamic based on the situation.
How do we determine the reasonable expectations of other agents?

12 MIS² ISA BIG ASSUMPTION FOR BRAKING

Different braking capability means different stopping distances

2018 Porsche 911 GT3¹

 12.57

2018 Corvette C6 Z06¹

12.45
2016 Mazda CX5²
2016 Jeep Cherokee ${ }^{2}$
2015 Ford F1503
1996 Honda Civic ${ }^{4}$

- max braking force $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

2GARSTRAVEINE 45NPH:HOWNUCHSPREE SSAFE?

36 ft (1-2 car lengths)

With superhuman reaction time and supercar braking capability for both vehicles

RELCTIONTINE PLAYSAHUGE ROLE

Human average is $\sim 2.3 \mathbf{s}^{1}$
AVs will be dramatically better (closer to 0.5 s)

WHATHAPPEESASWE EHMNEE BRAMINGCAPABLITT?

Better capability in the following car shrinks safe distance needed

	Reaction Time	Braking (following car)	Braking (lead car)	Safe Distance
	0.5 s	$8 \mathrm{~m} / \mathrm{s}^{2}$	$10 \mathrm{~m} / \mathrm{s}^{2}$	$\begin{gathered} -53 \mathrm{ft} \\ \text { (3+ car lengths) } \end{gathered}$
	0.5	$10 \mathrm{~m} / \mathrm{s}^{2}$	$10 \mathrm{~m} / \mathrm{s}^{2}$	36 ft (2+cartengths)
	0.5 s	$12 \mathrm{~m} / \mathrm{s}^{2}$	$10 \mathrm{~m} / \mathrm{s}^{2}$	$\begin{gathered} 25 \mathrm{ft} \\ \text { (1+ car lengths) } \end{gathered}$

WHATHAPPEESASWE EHMNEE BRAMINGCAPABLITT?

Better capability in the lead car grows safe distance needed

Reaction Time	Braking (following car)	Braking (lead car)	Safe Distance
2.3 s	$\overline{10} \mathrm{~m} / \mathrm{s}^{2}$	$\overline{8} \overline{\mathrm{~m} / \mathrm{s}^{2}}$	$\begin{gathered} -159 \mathrm{ft} \\ \text { (10+ car lengths) } \end{gathered}$
-2.3s	$10 \mathrm{~m} / \mathrm{s}^{2}$	$10 \mathrm{~m} / \mathrm{s}^{2}$	$175 \mathrm{ft}$
2.3 s	$10 \mathrm{~m} / \mathrm{s}^{2}$	$12 \mathrm{~m} / \mathrm{s}^{2}$	$\begin{gathered} 186 \mathrm{ft} \\ \text { (12+ car lengths) } \end{gathered}$

FASTERLATERLLACTION \rightarrow MOREDITANCENEEDED

Lane width in the United States ranges from 9-12 ft ${ }^{1}$

Reaction	Lateral	Lateral braking	Safe
Time	aececteration assumption	to avoid crash	Distance
0.5 s	$1.8 \mathrm{~m} / \mathrm{s}^{2}$	$1.8 \mathrm{~m} / \mathrm{s}^{2}$	6.4 ft
0.5 s	$3 \mathrm{~m} / \mathrm{s}^{2}$	$1.8 \mathrm{~m} / \mathrm{s}^{2}$	10 ft

LIMITED VISIBLITY \&OGELUDED AREAS

When sensing capabilities are physically limited, We must exhibit caution

THE BLINDCORNER

If something obstructs our view, we may not see that we're about to cross the Danger Threshold

NEIHBORHOODSWIHOUTISDINALLS

Are likely to have people walking along \& playing in the street

NEIBHBORHOOISWTHSIDEWALKS

Pull people away from the street, allowing cears to more safely operate at higher speeds

APPLYINGRRS

RSS can fit in the vehicle, in our testing, and in our lexicon of vehicle safety

INREEULATION

RSSIIISIDETHEVEHIGLE

Validation as a doer-checker

®

THEDOER-WHEMER

Assesses danger, validates planner's decisions, and triggers proper responses

RSSOUTSIDETHEVEHIOLE

Validating vehicle behavior on a test track

ARIZONA

COMMERCE AUTHORITY

With the rise of intelligent sensors \& edge computing
$=000$
we can enable intersections to analyze driver behavior using RSS

PROAGTIIE REEUIUATINNOFAV

An opportunity to get ahead of the curve

For the first time, we have the chance to define in advance and not after the fact, the desired balance of safety, utility, and efficiency of AV's on the road

RSS MOMENTUM

The model is gaining traction across the globe

To develop an RSS-based AV driving policy

(intel)

DAIMLER

SAFETY FIRST FOR AUTOMATED DRIVING

- APTIV.

SARECOMPPAPER

Autonomous Vehicles Meet the Physical World: RSS, Variability, Uncertainty, and Proving Safety

Philip Koopman, Beth Osyk, Jack Weast

Edge Case Research, Pittsburgh PA, USA
Intel, Chandler, AZ, USA
koopman@cmu.edu, bosyk@ecr.guru, jack.weast@intel.com

Abstract. The Responsibility-Sensitive Safety (RSS) model offers provable safety for vehicle behaviors such as minimum safe following distance. However, handling worst-case variability and uncertainty may significantly lower vehicle permissiveness, and in some situations safety cannot be guaranteed. Digging deeper into Newtonian mechanics, we illustrate complications that result from considering vehicle status, road geometry and environmental parameters. We propose a Micro-Operational Design Domain ($\mu \mathrm{ODD}$) approach to subdividing the operational space as a way of improving permissiveness. Confining probabilistic aspects of safety to μ ODD transitions permits proving safety (when possible) under the assumption that the system has transitioned to the correct $\mu \mathrm{ODD}$ for the situation. Each $\mu \mathrm{ODD}$ can additionally be used to encode system fault responses, take credit for advisory information (e.g., from vehicle-to-vehicle communication), and anticipate required responses for likely emergent situations. Finally, we augment the original RSS dmin equation to cover additional cases.

ANOMORF...

Safety Evaluation of Responsibility-Sensitive Safety (RSS) on Autonomous Car-Following Maneuvers Based on Surrogate Safety Measurements

Chen Chai, Member, IEEE, Xianming Zeng, Xiangbin Wu and Xuesong Wang*

Calibration and Evaluation of Responsibility-Sensitive Safety Model on Autonomous CarFollowing Maneuvers Using Naturalistic Driving Study Data

Xiaoyan Xu

Graduate Research Assistant
College of Transportation Engineering, Tongji University 4800 Cao'an Road, Shanghai 201804, China

A Situation-Aware Collision Avoidance Strategy for Car-Following

Li Li, Fellow, IEEE, Xinyu Peng, Fei-Yue Wang, Fellow, IEEE, Dongpu Cao, Member, IEEE, and Lingxi Li, Senior Member, IEEE

2019 IEEE Intelligent Vehicles Symposium (IV)
Paris, France. June 9-12, 2019

Towards Standardization of AV Safety Assurance: C++ Library for Responsibility Sensitive Safety

Bernd Gassmann ${ }^{1}$, Fabian Oboril ${ }^{1}$, Cornelius Buerkle ${ }^{1}$, Shuang Liu ${ }^{1}$, Shoumeng Yan ${ }^{1}$, Maria Soledad Elli ${ }^{2}$, Ignacio Alvare Z^{1}, Naveen Aerrabotu ${ }^{2}$, Suhel Jaber ${ }^{2}$, Peter van Beek ${ }^{2}$, Darshan Iyer and Jack Weast ${ }^{2}$

Absract- The need for safety assurances in Automated Driv- ing (AD) is becoming increasingly critical with the accelerativ ing (AD) is becoming increasingly critical with the accelerating deployment of this technology. Beyond functional safety, indus-

 RSS is a technology-ncutral model for safety that can beused to define and measure whether an AV is driving safely.
RSS formalizes an interpretation of "common sense" and RSS formalizs an interpretation of "common sense" and
defines what it means for an AV to drive safely on its own
defines what it means for an AV to drive safely on its own
and how it should exerise reasonabe caution to protect
apainst the unsafe driving behavior of others. The paper and how it should exercise reasonable caution to proner
against tte unsafe driving bechavior of others. The paper
presented RSS as a mathematical model that formalizes this presented RSS as a mathematical model that formalizes this
interpetation for automated driving vehicles and aims to interpretation for automated driving vehicles and aims to
satisfy the need for sound (i.e. law-abiding), useful (vs. overly conservative)
for automated driving As highlighted by [5], RSS contributes to the overall safety of automated diving vechicles in the operational safety
domain (complimentary to to te functional domain (complimentary to the functional saffety domain).
Advanced automated driving systems with capabilitice be Advanced automated driving systems with capabilities be-
yond L3, as sescrited in [6 , require significant investments yond L3, as descrnbed in $[6$, require significant inessmenss
in operational safety, in particular in the areas of scenario
development and formal verifitation dovelopment and formal vericifation, testing and validation
tools. Recent contributions in these areas such as 17 have tools. Recent contributions in these areas such as [7] have
expanded RSS with formalized components of dynamics and expanded RSS with formalized components of dynamics and
policics and highlight limitations of existing tools towards policies and highlight limitations of existing tools towards
developing an automatic formal verification framewowk. A

Abstract-In this paper, we discuss how to develop an appropriate collision avoidance strategy for car-following. This strategy aims to keep a good balance between traffic safety and efficiency of position/speed perception/measurement of vehicles and other of position/speed perception/measurement of vehicles and other
drivers. Both theoretical analysis and numerical testing results are provided to show the effectiveness of the proposed strategy.
Index Terms-Collision avoidance, safety, traffic efficiency uncertainty.

Re avoid drivir were avoid avoid releas

The work of [12] develops a planner that generates "maneuver automata", and uses the theorem prover Isabelle to ensure that the maneuver automata satisfy specifications given in Linear Temporal Logic (LTL). Since LTL is primarily used to reason about discrete transition over automata, ensure that the continuous dynamics respect the high-level pecification. In contrast, STL supports both discrete and pecification. In contrast, STL supports both discrete and ontinuous reasoning, which means that we do not need to

Abstract-We develop a set of contracts for autonomous follow the contracts ensures that if all traffic participants free. We express our contracts in Signal Temporal Logic STL), a lightweight specification language that enables V\&V nethodologies. We demonstrate how the specification can be used for evaluation of the performance of autonomy software,
and We provide preliminary evidence that our contracts are not excessively conservative, i.e., they are not more restrictive than existing guidelines for safe driving by humans.

Specifying Safety of Autonomous Vehicles in Signal Temporal Logic

Nikos Aréchiga

Announcing...

C++11RSSLIBARYY

Standalone Open Source Library currently covering a subset of RSS rules (with development ongoing)

(3)

1 Longitudinal scenarios

2) Lateral scenarios \& Multilane roads
(3) Intersection handling
https://intel.github.io/ad-rss-lib/

RSS LIBRAVYCARRIA

WHISAPREGRASHSEENARIOSIN GARLA

Scenario: red light / stop sign at T-Junction
V_{2} has a stop sign... And runs right through it

Using RSS, V_{1} analyzes vehicle telemetry, identifies the danger, and

AVSAFENY:ANISSUELARGERTHAN ONECOMPANY

What are we doing

INDUSTRY

Engaging with customers, competitors and consortia to have an open dialogue on AV safety

ACADENIA

RSS Research Centers at Universities in USA, PRC and EU

GOVERNENT/NEOS

Understanding government expectations on transparency and verification of AV safety

RERL WORID

Deploying RSS in our on AV Fleet in very challenging environments

