

International Standards Strategies for Securing Autonomous Driving Functions

Industrial ConvergenceTechnology Center Sungmin Kim

ISO 26262 2nd Edition Overview

ISO 26262 Standard Establishment Revision Activity

- Standardization on TC22 SC32 WG8

- ▶ Drafting(2015.01) \rightarrow CD Ballot(2016.02) \rightarrow DIS Ballot(2016.12)
 - → FIDS Ballot(2017.06) → IS (2018.01)
 - Revision work on TC22 SC32 WG8
- 2nd Ed Distribution(2018.12.24)

Ref.) CD(Committee Draft, DIS(Draft International Standard,

FDIS(Final Draft International Standard), IS(International Standard)

ISO 26262 2nd Edition Revision

Major Revisions

- Extend the range of road vehicles covered by the standard
- (1st Ed) Safety-related systems that include one or more electrical and/or electronic (E/E) systems and that are installed in series production passenger cars with a maximum gross vehicle mass up to 3 500 kg
- (2nd Ed) Safety-related systems that include one or more electrical and/or electronic (E/E) systems and that are installed in series production road vehicles, excluding mopeds

Addition to ISO 26262 Application Guidelines for Semiconductor (Part 11)

- Increase in Multi-system based Items Related to Autonomous Driving
- Change of structure / Add / Complement / Integration of existing parts

ISO 26262 2nd Edition Revision

Major Revisions

Guidelines for applying ISO 26262-11 to semiconductors

Agenda	Applicable systems
 1) Base failure rate estimation Permanent fault (IEC TR 62380, SN 29500, FIDES) Transient fault Component package failures 2) Dependent failure analysis 3) Fault injection 	 1) Digital components, memories 2) Analogue / Mixed signal components 3) Programmable logic device 4) Multi-core components 5) Sensors and transducers

SOTIF (Safety Of The Intended Functionality) Overview

ISO 21448 International Standard

- TC (Technical Committee) / SC (Sub Committee) / WG (Working Group)
- KTL is a secretary of the Republic of Korea in ISO TC22/SC32/WG8 Functional Safety, responsible for providing guidance on verification, validation and design conformity required to achieve SOTIF.

ISO 21448 International Standard Pub Schedule

SOTIF Overview

- SOTIF(Safety Of The Intended Functionality)
 - SOTIF(Safety Of The Intended Functionality) : The Absence of unreasonable risk due to these potentially hazardous behaviours related to such limitations
 - Functional safety : The absence of unreasonable risk due to hazards caused by malfunctioning behavior of E/E systems
- To address the SOTIF, activities are implemented during the following 3 phases
 - 1. Measures in the design phase

Example : Requirement on sensor performance

2. Measures in the verification phase

Example : Technical Reviews, test cases with a high coverage of relevant scenarios, injection of potential triggering conditions, in the loop testing (e.g. SIL / HIL / MIL) of selected SOTIF are relevant use cases.

3. Measures in the Validation phase

Example : Long term vehicle test, simulations

SOTIF Overview

Possible Interactions of Product Development activities between ISO 21448 and ISO 26262 processes

SOTIF Standard Contents

Overview of safety relevant topics addressed by different ISO standards

Source	Cause of hazardous event	Within scope of
	E/E System failures	ISO 26262
	Performance limitations or insufficient situational awareness, with or without reasonably foreseeable misuse	ISO 21448
System	Reasonably foreseeable misuse, incorrect HMI (e.g. user confusion, user overload)	ISO 21448 ISO 26262 European statement of principal on the design of human-achineinterface
	Hazards caused by the system technology	Specific standards
	Successful attack exploiting vehicle security vulnerabilities	ISO 21434 SAE J3061
External factor	Impact from active infrastructure and/or vehicle to vehicle communication, external devices and cloud services	ISO 20077 ISO 26262
	Impact from car surroundings (other users, "passive" infrastructure, environmental conditions: weather, Electro-Magnetic Interference)	ISO 21448 ISO 26262

Thank You